a comprehensive map of galaxy & black hole evolution over cosmic time

Leonidas Moustakas JPL/Caltech

The luminous universe

cosmic components

The ~5% ordinary
 matter component
 (and the consequent
 collapsed objects)
 produce the luminous
 universe we observe.

Planck Collaboration 2013

Star Formation & Black Holes

- Star formation (SF) processes produce energy through nuclear fusion, and thermal & nonthermal radiation.
- The immediate and extended volumes near black holes (BH) produce energy through gravitational accretion, enabled by MHD processes, and energy transfer affects both local and "global" galactic environments.
- All galaxies appear to host massive BHs in their cores, which are active at times, likely through mechanisms connected to galaxy evolution.

Co-evolution of BHs & galaxies...

Black hole mass in *local* galaxy centers

Luminosity functions, and relation to mass function

Galaxy velocity dispersion = proxy for mass

- There is clearly a co-evolutionary connection between galaxies and their central black holes, whether active or quiescent.
- Activity in black holes plays a key role in regulating star formation in galaxies above a specific mass scale.
- We have begun to characterize this; a deep understanding of it is of the future.

The ultimate goal

- There is an interrelation of baryonic and black hole formation and evolution processes.
- These communicate with each other, or have common physical / astrophysical triggers.
- To achieve a deep understanding of these connections observationally and in fundamental theory, we are driven to assemble a set of experiments that inform key elements of the problem, from the very local to extreme reaches of cosmic time.

Vignettes on the theme. I.

- A full census of baryonic components and structure
 - The 'missing' media: probing warm/hot gas around galaxies: Ultraviolet (to soft X-ray) spectroscopy, to go beyond the neutral components
 - Structure of stellar distributions: strong gravitational lensing observations

Shull+2012, ApJ,759,23

Moustakas+2013

Vignettes on the theme. II

- Chemical and 6D phase space structure, over cosmic time
 - Stellar: spectroscopically determined abundances of GAIA volume
 - Chemical tagging for ages, metallicities, and abundance ratios, towards inferring formation and assembly history.
 - Black hole masses and structure: reverberation mapping
 - Time domain precision spectroscopy; could leverage strong lenses.
 - Thermal signatures for both stellar and active components: mid-infrared all-sky mapping, "WISE at z>1+"
 - Mid-infrared full sky imaging survey to AB=16

Vignettes on the theme. III.

• Pushing the limits:

- Expanding "near" field cosmology to great distances: high resolution optical/UV.
- Expanding "near" baryonic process mapping to even greater distances: galaxy-IGM interactions into the re-ionization era(s).

Enabling the science. I.

Apertures and telescopes

- Lightweight mirrors (silicon carbide casting and figuring), phased with laser truss to diffractionlimiting tolerances
 - Enables capabilities at both small (SMEX) and large (20+ meter) apertures, over the full span of the roadmap exercise.
 - Actuator control and segmented panel assembly presently being tested at JPL and elsewhere.

Enabling the science. II.

• Detectors

- High quantum efficiency ultraviolet detectors
 - Delta-doping techniques
- Microwave Kinetic Inductance Detector (MKID)
 - Photon energy & time tagging over large fields of view
 - Coverage ~ 0.2-1.8um, spectroscopic R~50 => magnitude limits of ~30 in 20ksec at SNR>10 in each wavelength bin.
 - Can be used as a high-spec resolution splitter/sorter
 - See Ben Mazin talk on 5/7/13.

Enabling the science. III.

• Instruments

- Integral field spectroscopy
 - Mapping the internal kinematic structure of individual galaxies at high sensitivity, to z>2: R>several thousand...
 - At each technological stage, map the galaxy / local mediums characteristics and interactions, from local to z~8:
 R>tens of thousands...
 - Complementarity of densely packed IFS fields, and widefield, programmable highly multiplexing masks
 - Cobra mechanism, microshutters, etc
 - Another option: tie-in with photon-tagging detectors (MKIDs)
 that track positional information as well.

Enabling the science. IV.

- Programmatics: Mission Implementation.
 - Large solid angle vs targeted
 - Complementarity in mission design
 - Time domain programs for time-variable phenomena
 - Strongly lensed multiply-imaged accreting black holes
 - Reverberation mapping
 - The relevant time-scales increase with black hole mass (because of crossing times), and redshift (x(1+z)).

Enabling the science. V.

- Computational resources and theoretical advances
 - Including baryonic processes
 - This remains a massive challenge for the foreseeable future.
 - Trillion particle simulations
 - For reference: the Bolshoi dark matter-only cosmological simulation has just a few x billion particles tagged and traced
 - Inference and analysis techniques
 - Quantum computing
 - Alternative computational techniques

The next three decades

Way-	Scientific Challenges		Technological Challenges
station	Wide-field	Targeted	
By the 2020s	* "Missing baryon" mapping through UV integral field spec/y.	* Dynamics and chemistry of "in the act" black hole activity caught by LSST. * Percent precision mass maps of galaxy structure with redshift, leveraging strong gravitational lensing.	* High QE FUV detectors. * >1 arcmin IFS. * Several thousand multiplex, >1deg field spec capability. * Sub-percent reproducible time domain spectrophotometry.
By the 2030s	* Precise stellar RV and chemical measurements of <i>all</i> stars within the GAIA volume. * Mid-infrared AB=16 full-sky imaging survey	* Reverberation mapping tomography of "emerging" black holes at onset of activity from quiescence.	* Trillion-particle galaxy simulations including baryonic processes. * Kinetic Inductance detector photon tagging over large fields of view.
By the 2040s	"Near-field cosmology" from resolved stars in distant galaxies.	* Galaxy-IGM interactions at z>8. * Identify and dynamically measure masses of quiescent black holes to Dark Ages threshold.	* Quantum computing for rapid inference theoretical interpretations of observations. * SNR>10, R>20,000 spectra of quasars. * SNR>100, R>10,000 spectra of stars in distant galaxies.

a comprehensive map of galaxy & black hole evolution over cosmic time

- Several technological and programmatic themes connect this science goal:
 - A distributed but deliberately coordinated effort from Explorer through Flagship scale missions
 - This can be enabled through new light and assembled apertures
 - Spectroscopy (multiplexing and integral) is important
 - Chemical, kinematic, dynamic mapping from stars through high redshift galaxies and accreting black holes
 - Optimized time domain mission implementation
 - Time variability in active galaxies, particularly modulated through strong gravitational lenses, has great promise across broad mission scales
 - The theoretical underpinnings must be addressed in parallel, both for forecasting and mission design, and for interpretation.